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Female bats of temperate zones often communally rear their young, which cre-

ates ideal conditions for naive juveniles to find or learn about resources via

informed adults. However, studying social information transfer in elusive and

small-bodied animals in thewild is difficult with traditional tracking techniques.

We used a novel ‘next-generation’ proximity sensor system (BATS) to investigate

if and how juvenile bats use social information in acquiring access to two crucial

resources: suitable roosts and food patches. By tracking juvenile–adult

associations during roost switching and foraging, we found evidence for

mother-to-offspring information transfer while switching roosts but not

during foraging. Spatial and temporal patterns of encounters suggested

that mothers guided juveniles between the juvenile and the target roost.

This roost-switching behaviour provides evidence for maternal guidance

in bats, a form of maternal care that has long been assumed, but never docu-

mented. We did not find evidence that mothers guide the offspring to

foraging sites. Foraging bats reported brief infrequent meetings with other

tagged bats that were best explained by local enhancement. Our study illus-

trates how this recent advance in automated biologging provides researchers

with new insights into longstanding questions in behavioural biology.
1. Background
Social information should be of particular importance for juveniles during the

early period of their lives [1]. The presence of parents and other adults gives

plenty of opportunities to socially acquire information [1,2] that would other-

wise be more costly to acquire through trial-and-error learning [3,4]. Social

information can enable better decisions in contexts such as predator avoidance,

reduction of parasitism, habitat choice and foraging [5]. While the value of

social information for the young of most mammalian species is widely

accepted, the empirical evidence is highly biased towards tractable species

and captive experiments. A great challenge has been the study of social infor-

mation transfer in small and elusive species in nature.
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The role of social information between mother bats and their

juveniles has been a longstanding topic. Juvenile bats can relo-

cate with their mothers to a new roost after being excluded

from their current roost [6], and home ranges in mothers and

their offspring show spatial association in at least three species

[7]. These observations suggest the possibility of following

and guidance by juveniles and their mothers. However, studies

should analyse the spatial proximity among mothers and off-

spring at high temporal resolution during foraging and roost

switching in order to clearly demonstrate guidance by mothers

or following behaviour by juveniles.

During the past decade, several emerging technologies

have revolutionized the field of bio-logging and in turn our

understanding of the behaviour of wild animals. However,

studies on small vertebrates still lag behind due to the scar-

city of fully automated lightweight tracking devices [8]. For

studying most small animal species in the wild, old-

fashioned tracking technologies such as VHF-telemetry and

PIT-tagging still represent the state-of-the-art, but the data

obtained typically lack the accuracy and resolution to observe

processes like information transfer in detail.

Proximity loggers, which sense dyadic associations by

communication among animal-borne tags, represent a

powerful tool for the study of information transfer [9,10].

Yet, the first generation of proximity loggers suffered from

performance problems [11], newer versions have faced a

trade-off between weight [12] and runtime [13]. In the pre-

sent study we used the newly developed miniaturized

proximity sensor system ‘BATS’, a fully automated system

for documenting associations among individuals at a tag

weight of 1–2 g and runtimes of at least one to two weeks

[14–16]. In addition to logging encounters, we could localize

many encounters to a particular site by placing stationary

base stations below known roosts. Here we report on the

first extensive study to apply our system.

We investigated the use of social information in acquiring

access to two types of resources that are crucial in the life of a

juvenile bat: suitable roosting sites and food patches (e.g. tree

holes or bat boxes and insect-rich foraging grounds). Fre-

quent roost switches may help to maintain favourable

microclimatic conditions [17] or to avoid parasites [18],

while food supply during early development may have last-

ing fitness consequences [19,20]. Behavioural experiments

demonstrated the benefits of social information in both con-

texts. Social information may facilitate roost finding [21,22]

and support the learning of novel foraging behaviours

[23,24]. We hypothesized that fledging offspring would use

social information by following their mother or other adults

in the social groups to roosts or foraging sites. Accordingly,

juveniles that successfully switch roosts should be associated

with at least one individual from the roost group when leav-

ing the first roost and also when arriving at the second roost.

If social information is used for finding foraging grounds, we

expect the same pattern when starting a foraging bout.

Additionally, we expect repeated associations during the sev-

eral minutes while bats commute to a foraging ground, and

possibly, but not necessarily, when returning to the roost.
2. Material and methods
This study was conducted in ‘Königsheide Forst’, a mixed forest in

the city of Berlin, Germany, from June to August in 2016 and 2017.
The area comprises many natural roosts in tree holes and roughly

130 bat boxes. We studied maternity colonies of the common noc-

tule bat (Nyctalus noctula), seasonal aggregations where females

jointly give birth and rear their young. Maternity colonies involve

fission–fusion dynamics where females and their offspring (often

twins) move among several roosts, with temporary groups of up to

ca 50 individuals [25]. We captured entire social groups from bat

boxes during the period when around two-thirds of offspring

have already fledged. After fledging, juvenile noctule bats still

nurse from their mothers for a few weeks [26]. This should be the

most likely time for our study to observe information transfer.

We tracked a total of 60 bats (2016: 10 juveniles and 16 adult

females; 2017: 19 juveniles and 15 adult females).

The fully automated BATS tracking system includes field

strength-related distance estimation between animal-borne

mobile nodes (hereinafter ‘proximity sensors’, figure 1), and

automated remote data download by stationary nodes (herein-

after ‘base stations’). The proximity sensors weigh 1.1–1.9 g

depending on battery size and housing. Runtime is at least

1 week. The proximity sensor broadcasts a signal every 2 s.

When other proximity sensors are within reception range of

max. 10 m [27], the start of a ‘meeting’ is created. As soon as

no signal has been received by the respective meeting partner

for 10 s, the proximity sensor closes the meeting and stores it

in the on-board memory along with the ID of the meeting part-

ner, a timestamp, the total meeting duration, and the maximum

received signal strength indicator (RSSI). The signal is simul-

taneously received by any base station within range. We

positioned base stations near potential roosts to detect tagged

bats arriving or departing. We therefore termed a signal from a

bat to a base station as a ‘presence signal’. Base stations remotely

downloaded and locally stored all data. For an in-depth description

of the BATS tracking system design see [15].

We detected unambiguous roost switches and foraging bouts

using the presence signals of tagged juveniles at base stations.

During these events, we screened for individuals that jointly

depart from a roost and also jointly arrive at the target roost (indi-

cated by meetings upon departure and arrival). We also detected

meetings during the entire time of a foraging bout by a juvenile

(see electronic supplementary material, figure S1 for details). To

test whether juveniles preferably associate with their mothers,

we used Mantel tests (ade4 R package, 9999 permutations) to

test whether the matrix of mother–offspring (1) and non-

mother–offspring relationships (0) predicted matrices based on

unweighted networks of association during roost switching and

foraging. We tested the years 2016 and 2017 separately (see elec-

tronic supplementary material for details on microsatellite-based

kinship analysis).
3. Results
Proximity sensors successfully documented associations

among tagged juvenile and adult bats while switching

roosts. Juveniles were associated with adults during 16 roost-

switching events by 12 different juveniles. In 2016, seven

juveniles were observed 10 times to associate with an adult

during roost switching. All 10 roost-switching dyads were

mothers and their offspring. In 2017, five juveniles switched

roosts twice in association with their mother and in four

cases with another adult female. Mothers and juveniles were

observed switching roosts together more than expected by

chance (2016: r ¼ 0.88, p , 0.001; 2017: r ¼ 0.21, p , 0.01).

Some juveniles switched directly among two roosts; such

events took only seconds to minutes (table 1). During other

events, bats used stopover sites and movements show that

mothers made several attempts to re-associate with their
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Figure 1. Unpackaged proximity sensor (a) and tagged adult common noctule bat (Nyctalus noctula) ready for take-off (b).

Table 1. Summary of joint roost-switching events by juveniles and associated partners. Roost-switching durations and distances were only determined when
both roosts were known and equipped with base stations. Switching mode: 1 switch among two known roosts; 2 switch among two known roosts including a
joint stopover at an unknown site indicated by stable meetings; 3 switch between a known and an unknown roost (indicated by stable meetings, see electronic
supplementary material, figure S1c).

season juvenile ID sex partner ID (mother) distance (m) duration (hh:mm:ss) switching mode

2016 9311 f 9330 (m) 307 01:48:44 2a,b

2016 9318 f 9330 (m) 307 00:01:54 1a,b

2016 9311 f 9330 (m) 297 00:00:56 1a

2016 9318 f 9330 (m) 297 00:00:35 1a

2016 9323 m 9340 (m) 307 01:38:41 2

2016 9325 m 9336 (m) 307 01:06:48 2

2016 9307 f 9338 (m) — — 3

2016 9319 f 9327 (m) — — 3

2016 9312 f 9334 (m) — — 3

2016 9323 m 9340 (m) — — 3

2017 9376 f 9383 179 00:00:20 1

2017 9373 m 9412 248 00:00:26 1

2017 9376 f 9383 — — 3

2017 9370 f 9368 (m) — — 3

2017 9380 m 9413 — — 3

2017 9391 f 9385 (m) — — 3
aRoost switch of mother and twins including repeated commuting flights.
bSee figure 2 for a schematic representation.
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young before both arrive at the new roost (figure 2). Such

attempts of re-association suggest that (i) the offspring was

actively flying and not carried by the mother, and (ii) the

observed behaviour was not simply a juvenile following its

mother, but rather some form of guidance by the mother.

For example, figure 2 illustrates one case of a mother,

which was attending to its twins that were separated, and

appeared to herd them while moving from one roost to

another.
When starting a foraging bout, juveniles never associated

with their mothers and rarely encountered other tagged

adults. In total we detected 42 foraging bouts of juveniles

(2016: four juveniles, eight bouts; 2017: nine juveniles, 34

bouts). Whenever a juvenile and its mother were co-roosting

before both started individual bouts (n ¼ 13 events), the

mother left the roost at least 4 min earlier than the juvenile

(4:31 to 86:02 min). During six of the 42 foraging bouts of

juveniles (14%, n ¼ 7 juveniles), we detected 21 encounters
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pup 1 (ID 9318)
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Figure 2. Schematic representation of a mother and its twins switching roosts together (based on meeting data and presence signals). Repeated commutes back
and forth indicate guidance behaviour of the mother. (a) A mother and its twins jointly leave roost 1 and the mother successfully moves 307 m distance to roost 2
with juvenile 1. The association between mother and juvenile 2 aborts and juvenile 2 flies back to roost 1. (b) Juvenile 2 moves from roost 1 to an unknown location
where it is later joined by its mother after a few minutes. Both fly together towards roost 2, but juvenile 2 flies back to roost 1 while the mother encounters juvenile
1 at roost 2. (c) The mother joins juvenile 2 in an unknown location and they jointly switch to roost 1. They jointly leave roost 1, but only the mother arrives at roost
2 starting a meeting with juvenile 1; meanwhile, juvenile 2 flies back to roost 1. (d) The mother joins juvenile 2 at an unknown location. At around 00:50 the
meeting is interrupted for several minutes possibly because at least one individual left, before the mother commutes twice between its two juveniles. Finally, around
01:15 the mother successfully switches with juvenile 2 to roost 2. All three bats stay at roost 2 until shortly before 02:00.
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with 11 individuals, which lasted between 1 and 30 s. Three

of these meetings occurred within less than 90 s after the

two co-roosting individuals left their roost, but no further

meetings were observed during these foraging bouts. All

remaining meetings occurred at least 7 min after roost depar-

ture. The meeting partners included eight other juveniles,

two adult females, and only one identified mother, which is

not different from chance (2017: r ¼ 0.08, p ¼ 0.19; 2016: no

mother–pup dyad among three observed dyads and there-

fore not tested).
4. Discussion
Studying the wild social behaviour of small nocturnal ani-

mals is challenging. Our newly developed proximity sensor

system enabled us to detect a novel behaviour consisting of

brief, hard-to-observe events: coordinated roost movements

by mothers and young. In some cases, mothers repeatedly

commuted back and forth until offspring moved to the new

roost (figure 2). The most parsimonious explanation for this

pattern of behaviour is maternal guidance of juveniles, a

form of maternal care that has been suspected but never pre-

viously demonstrated. Young bats are highly dependent on

maternal care for food, protection, and warmth [28]. Maternal

care in bats is known to include nursing, post-weaning food

provisioning [29,30], grooming [31–33], and pup guarding

[34]. In some species, mothers often carry young in flight,

possibly to other temporary roosts or feeding grounds [35].

However, this is the first study to provide empirical evidence

that mothers guide volant young to roosts.

Anecdotal evidence from other bat species suggest that

mothers and young maintain contact during the initial fora-

ging flights of juveniles [36]. However, we did not find

evidence for coordinated mother–young foraging in noctule

bats. Instead, juveniles started foraging considerably later

than their mothers and only occasionally encountered other

tagged colony members. Insectivorous bats often eavesdrop

on the ‘feeding buzzes’ of conspecifics, a form of local
enhancement at feeding grounds, which may explain the

juvenile encounters with others [37–39].

Why does mother–offspring guidance occur during roost

switching but not foraging? One possible explanation is that

mother–young associations are crucial for social thermo-

regulation and lactation, which lasts for three weeks to two

months depending on the species (reviewed by Kerth [40]).

In noctule bats, nursing continues after fledging [26] and

can last for up to two months in captivity [31]. Another

factor is that noctule bats feed on diverse insect prey [41],

which may enable juveniles to forage opportunistically. Com-

pared to food, suitable roosts of high quality may be harder

to find without social cues and roost quality might also

require more assessment. Prey patches are ephemeral and

any conspecific might provide social cues about prey

location. In contrast, social information about roosts is

stable enough to accumulate disproportionately among phi-

lopatric adult females. Finally, although noctule bats can

find new roosts by eavesdropping on social calls [42], this be-

haviour would not allow for finding specific individuals at

distances observed in our study.

Our study shows a further step forward in the current

revolution in tracking technology enabling to address long-

standing biological questions. Twenty years ago, Wilkinson

& Boughman [43] speculated that young bats follow adults

in situations such as roost switching, and modern technologi-

cal innovations have now allowed us to unequivocally track

mother–juvenile associations during roost-switching move-

ments. The integration of smart power management and

multiple sensors has reduced the size and energy consump-

tion of sensors, allowing for the collection of high-

resolution datasets that can reveal how social networks

change over time [44] and the existence of rare, but biologi-

cally important, behaviours.
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